Sperm can survive up to 200 years in space, a recent study finds – Screen Shot
Deep Dives Level Up Newsletters Saved Articles Challenges

Sperm can survive up to 200 years in space, a recent study finds

A recent study published in the scientific publication Science Advances has found that mouse sperm, freeze-dried for almost six years onboard the International Space Station, did not have any DNA damage and was able to produce healthy offspring in outer space. The findings, according to experts, give further evidence that mammalsincluding humanscan reproduce in space.

The news is even more promising for the next stage of intergalactic human evolution when combined with other experiments which exposed mice sperm to X-ray radiation. The study further suggests that mammalian sperm cells could be preserved aboard the International Space Station for a whopping 200 years.

Until recently, modern experiments by NASA on the cancer risk model for space radiation was based upon data from survivors of the Hiroshima and Nagasaki atomic bombings and “not real experiments in space,” a team from the University of Yamanashi said. Until now, researching the impact of space radiation on Earth has come with significant caveats.

Due to the complex mixture of different types of radiation in space, they say experiments assessing DNA damage on Earth alone cannot capture the true realities of conditions beyond our atmosphere. While scientists have compiled hoards of extensive research on the exposure of outer space radiation to the damage of DNA in cellsresulting in mutations in offspringthis particular research has faced significant hurdles due to the lack of freezers onboard the International Space Station. In an attempt to overcome these challenges, scientists freeze-dried the samples of mice sperm in small, lightweight capsules which were then transported to the Space Station by rocketnegating the need for a freezer on board altogether.

Sayaka Wakayama, a scientist involved in the team from the University of Yamanashi, told The Independent, “There are many different types of radiation flying around in space, unlike on the ground. For example, there are heavy ions, protons, and electromagnetic waves from solar flares. It is difficult to irradiate and reproduce all of these types of radiation at the same time on the ground, so I think that DNA damage in biological samples can only be measured in space.”

What actually went down, or rather up?

Researchers periodically tested small portions of the mice sperm samplea batch returning to Earth from the International Space Station after nine months, another returning after two years and nine months and a final one after five years and ten months.

After returning to Earth, the samples were tested to measure how much radiation they had absorbed, performing tests to assess the DNA damage in cell nuclear. Ultimately, even the last freeze-dried sperm sample, which had been in long-term orbit, did not display any radiation damage to the DNA.

In her interview with The Independent , Wakayama added: “The total amount of space radiation absorbed by the ISS, as measured by the Japan Aerospace Exploration Agency (JAXA), was 0.41 milli Gray (mGy) per day. The results of X-ray irradiation experiments on the ground showed that freeze-dried sperm can withstand up to 30 Gy. Freeze-dried sperm can [still] produce the next generation when irradiated with up to 30 Gy of X-rays.” The typical radiation dose for treating cancers, in comparison, ranges from 60 to 80 Gy.

The successful birth of the first “healthy space pups”

On returning to Earth, scientists de-iced and rehydrated the sperm cells that were once in outer space. When injected into fresh ovary cells and transferred into female mice, they were able to give birth to “healthy space pups,” the study noted.

A total of 168 pups were born from the once-in-outer-space sperm cells. All of the mice showed no abnormalities in appearance or generic activity patterns compared to their control group. The study added that “although there are differences between DNA damage from X-rays and space radiation, it can roughly predict that freeze-dried sperm can be preserved on the ISS for over 200 years.”

The implication of this breakthrough in scientific discovery is, quite literally, a sci-fi fanatic’s wet dream. Perhaps it could be the key to getting our future generations off this increasingly-heated big rock floating through spaceallowing humanity to populate even more of the Universe. Whether that’s fair to the other sentient beings living in our Universe is up for debate. After all, we do have a bad tendency to mess everything up. That being said, scientists, like the ones at Yamanashi, hint that more research from similar onboard experiments could shed light on the effects of radiation in space and give us an important understanding of how life forms can withstand long-duration stays in space.

Scientists have been ageing wine in space. Here’s what happened to it after 14 months

In November 2019, European startup Space Cargo Unlimited launched an unusual payload to the International Space Station (ISS). Among 8,200 pounds of research and crew supplies were 12 bottles of the finest Bordeaux wine, left undisturbed at a constant temperature of 18 degrees Celsius. 14 months later, the ‘space-aged’ cargo orbited back—literally bottling up insights that could help develop innovative solutions for the future of food and agriculture on Earth.

The zero-gravity journey

On 2 November 2019, Space Cargo Unlimited launched a cargo consisting of 12 bottles of Petrus 2000 aboard a Northrop Grumman Antares rocket that successfully docked with the ISS. Dubbed ‘WISE’ (Winegrape In Space Experiment), the mission was the first privately led, applied-research project seeking to study the effects of microgravity and space radiation on the ageing process of wine.

The 12 bottles shuttled up were sealed in CommuBioS canisters (to avoid breaking upon re-entry into the Earth’s surface) and stored at a constant temperature of 18 degrees Celsius to let the interior biological environment of the bottles do their work. Wine samples from the same batch were then taken and aged simultaneously on Earth to compare them with the ISS shipment after its triumphant return.

After a little over a year (438 days and 19 hours to be exact), the cargo safely landed back in the Gulf of Mexico on 14 January 2021. However, the bottles—along with all of their secrets—weren’t popped open until a wine tasting in March. Held at the ISVV (Institut des Sciences de la Vigne et du Vin) in Bordeaux, the event was the first step of analysis, promised to be “unlike any other wine tasting on Earth.” A panel of 12 professionals was gathered to taste and describe the terrestrial and space wine according to various visual, gustatory, and olfactory criteria.

For the first part of the test, panellists were given three glasses of wine, not knowing which one contained the wine from space. Visual and olfactory criteria were evaluated at this stage as many panellists admitted to spotting a difference in the evolution of colour in one of them. For the second part, the panellists carried out a comparative tasting of the wines.

“Unanimously, the two wines were considered to be great wines—which means that despite the 14-month stay on ISS, the ‘space wine’ was still very well evaluated sensorially,” explained Professor Philippe Darriet, director of the Oenology Research Unit at ISVV. Darriet noted the remarkable differences in the colour, aroma, and taste between the two wines in a press conference. According to wine writer and panellist Jane Anson, the wine that aged at the International Space Station “was really maybe one to two or even three years further evolved than you would expect from the one that had remained on Earth.”

“It’s hard for me to say if it was better or worse. But it was definitely different,” she told the BBC. “The aromatics were more floral and more smoky—the things that would happen anyway to Petrus as it gets older.” Anson further explained how Petrus was the smartest choice of wine to be sent into space, given its prestigious reputation and ability to age. “There aren’t that many wines that can genuinely age for 60, 70, longer years and Petrus is one of them,” she said, speculating whether the zero gravity or the journey to, from and around the Earth affected the wine.

Out of the 12 bottles, three were opened for the wine tasting as part of the first phase of analysis. While eight others are currently undergoing extensive research expected to span a couple of years, the last bottle is now being auctioned at Christie’s. The space-aged Petrus is up for sale in a ‘celestial chest’, handcrafted by Ateliers Victor. It is also sold alongside an Earth-aged bottle for comparison. Proceeds of the sale would fund future space missionsoffering collectors an opportunity to acquire a piece of space history while contributing to the ongoing research.

Voir cette publication sur Instagram

Une publication partagée par Christie's (@christiesinc)

Happy Hours of the future

The dozen bottles of Petrus, however, weren’t shuttled up out of mere curiosity. Let’s start with the concept of gravity here. Gravity is the only parameter of life that has remained unchanged over the past 4.5 billion years. Recreating an Earth-like environment with near-zero gravity, such as on the International Space Station, offers a unique research framework to better understand how key components of wineincluding grapes, yeast and bacteria—respond to weightlessness. This could essentially help scientists develop technology to grow more resilient plants back on Earth.

But why wine? When it comes to climate change, wines are said to be very sensitive to the fluctuations at play on Earth and are early indicators of the wider challenges faced. Wine is also sensitive to its environment during the ageing processwith different ageing environments leading to different flavours. According to Space Cargo Unlimited’s blog post, Mission WISE is an effort “following in the footsteps of Louis Pasteur,” who developed pasteurisation through experiments with wine fermentation. The startup thereby hopes the experiments would produce results that could have broader applications across food preservation and related technologies.

“Our goal is to tackle the solution of how we’re going to have an agriculture tomorrow that is both organic and healthy and able to feed humanity, and we think space has the key,” said Nicolas Gaume, CEO and co-founder of Space Cargo Unlimited, to The Associated Press. According to the startup, findings from the experiment could also be used to understand taste enhancement and flavour conservation on Earth.

Along with insights into space fermentation, mission WISE also symbolises the first tentative step towards establishing space-based commerce. Labelling the startup’s funding plan as the ‘Medici model’, Quartz highlighted how Space Cargo Unlimited’s research will be “paid for in part by a luxury goods partnership that will deliver a customised chest full of objects flown to space to ultra-wealthy sponsors, called patrons, who back the project.” Mission WISE ultimately participates in the transition of making space a place for business—with venture capitals, return on investment and profits. Although such ‘space PR stunts’ seem gimmicky, they might just help fund the future of space travel.

And with research suggesting how red wine could help fight the health effects of weightlessness among astronauts, findings from this experiment might just have the potential of whipping together a recipe for synthetic cocktails. Space tourists of the future, here we come!